guts

A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.
Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single combined electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into one electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying gravity with the electronuclear interaction would provide a more comprehensive theory of everything (TOE) rather than a Grand Unified Theory. Thus, GUTs are often seen as an intermediate step towards a TOE.
The novel particles predicted by GUT models are expected to have extremely high masses—around the GUT scale of




10

16




{\displaystyle 10^{16}}
GeV (just three orders of magnitude below the Planck scale of




10

19




{\displaystyle 10^{19}}
GeV)—and so are well beyond the reach of any foreseen particle hadron collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly, and instead the effects of grand unification might be detected through indirect observations such as proton decay, electric dipole moments of elementary particles, or the properties of neutrinos. Some GUTs, such as the Pati–Salam model, predict the existence of magnetic monopoles.
While GUTs might be expected to offer simplicity over the complications present in the Standard Model, realistic models remain complicated because they need to introduce additional fields and interactions, or even additional dimensions of space, in order to reproduce observed fermion masses and mixing angles. This difficulty, in turn, may be related to an existence of family symmetries beyond the conventional GUT models. Due to this, and the lack of any observed effect of grand unification so far, there is no generally accepted GUT model.
Models that do not unify the three interactions using one simple group as the gauge symmetry, but do so using semisimple groups, can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.

View More On Wikipedia.org
Top


Are you 18 or older?

This website requires you to be 18 years of age or older. Please verify your age to view the content, or click Exit to leave.